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What is a metric graph?

A metric graph is made of vertices

and of edges joining the vertices or
going to infinity.

∞

∞

∞

metric graphs: the lengths of edges are important.
the edges going to infinity are halflines and have infinite length.
a metric graph is compact if and only if it has a finite number of
edges of finite length.
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Constructions based on halflines

∞
The halfline

∞ ∞
The line

∞

∞

∞

∞

∞

The 5-star graph

∞∞

∞

∞ ∞

∞

The 6-star graph
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Functions defined on metric graphs

G
ff0

e0

f1

e1

f2
e2

f0

f1
f2

A metric graph G with three edges e0 (length 5), e1 (length 4) and e2 (length 3)

,
a function f : G → R, and the three associated real functions.

∫
G

f dx :=
∫ 5

0
f0(x) dx +

∫ 4

0
f1(x) dx +

∫ 3

0
f2(x) dx
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Why studying metric graphs?
Physical motivations

Modeling structures where only one spatial direction is important.

∞
∞

∞

A « fat graph » and the underlying metric graph
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The differential system

Given constants p > 2 and λ > 0, we are interested in solutions u ∈ L2(G)
of the differential system



u′′ + |u|p−2u = λu on each edge e of G,

u is continuous for every vertex v of G,∑
e≻v

du
dxe

(v) = 0 for every vertex v of G,

(NLS)

where the symbol e ≻ v means that the sum ranges over all edges of
vertex v and where du

dxe
(v) is the outgoing derivative of u at v

(Kirchhoff’s condition).
We denote by Sλ(G) the set of nonzero solutions of the differential system.
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Kirchhoff’s condition: degree one nodes

x1
∞

lim
t−−→

t>0
0

u(x1 + t) − u(x1)
t = 0

In other words, the derivative of u at x1 vanishes: this is the usual
Neumann condition.
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Kirchhoff’s condition: degree two nodes

x1
∞∞

(
lim

t−−→
t>0

0

u(x1 + t) − u(x1)
t

)
+
(

lim
t−−→

t>0
0

u(x1 − t) − u(x1)
t

)
= 0

In other words, the left and right derivatives of u are equal, which simply
means that u is differentiable at x1. This explains why usually we do not
put degree two nodes.

Damien Galant Constant sign and sign changing NLS ground states on noncompact metric graphs 8



Metric graphs NLS Ground states Some proof techniques Take-home message

Kirchhoff’s condition: degree two nodes

x1
∞∞

(
lim

t−−→
t>0

0

u(x1 + t) − u(x1)
t

)
+
(

lim
t−−→

t>0
0

u(x1 − t) − u(x1)
t

)
= 0

In other words, the left and right derivatives of u are equal, which simply
means that u is differentiable at x1. This explains why usually we do not
put degree two nodes.

Damien Galant Constant sign and sign changing NLS ground states on noncompact metric graphs 8



Metric graphs NLS Ground states Some proof techniques Take-home message

Kirchhoff’s condition in general: outgoing derivatives

x1
∞ ∞

∑
e≻v

du
dxe

(v) = 0
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The real line: G = R

∞ ∞

Sλ(R) =
{

±φλ(x + a)
∣∣∣ a ∈ R

}
where the soliton φλ is the unique strictly positive and even solution to

u′′ + |u|p−2u = λu.
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The halfline: G = R+ = [0, +∞[

∞

Sλ(R+) =
{

±φλ(x)|R+

}
Solutions are half-solitons: no more translations!

Damien Galant Constant sign and sign changing NLS ground states on noncompact metric graphs 11



Metric graphs NLS Ground states Some proof techniques Take-home message

The positive solution on the 3-star graph
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The positive solution on the 5-star graph
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A continuous family of solutions on the 4-star graph
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Variational formulation

We work on the Sobolev space

H1(G) :=
{

u : G → R | u is continuous, u, u′ ∈ L2(G)
}

.

Solutions of (NLS) correspond to critical points of the action functional

Jλ(u) := 1
2∥u′∥2

L2(G) + λ

2 ∥u∥2
L2(G) − 1

p ∥u∥p
Lp(G).

The level of the soliton φλ plays an important role in our analysis:

sλ := Jλ(φλ).
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The Euler-Lagrange equation associated to Jλ

The differential of Jλ : H1(G) → R is given by

J ′
λ(u)[v ] =

∫
G

u′(x)v ′(x) dx + λ

∫
G

u(x)v(x) dx −
∫

G
|u(x)|p−2u(x)v(x) dx

If φ has compact support in the interior of an edge e = ab, we have

0 = J ′
λ(u)[φ]

=
∫

e
u′(x)φ′(x) dx + λ

∫
e

u(x)φ(x) dx −
∫

e
|u(x)|p−2u(x)φ(x) dx

= du
dxe

(b) φ(b)︸ ︷︷ ︸
=0

− du
dxe

(a) φ(a)︸ ︷︷ ︸
=0

+
∫

e
(−u′′(x) + λu(x) − |u(x)|p−2u(x))φ(x) dx

so that u′′ + |u|p−2u = λu on edges of G.

Damien Galant Constant sign and sign changing NLS ground states on noncompact metric graphs 16
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Kirchhoff’s condition

Let a be a vertex of G and let b1, . . . , bD be the vertices adjacent to a.

Define φ so that it is affine on all edges of G, φ(a) = 1 and φ(v) = 0 for
all vertices v ̸= a. Denote ei := abi . Then,

0 = J ′
λ(u)[φ]

=
∑

1≤i≤D

(∫
ei

u′φ′ dx + λ

∫
ei

uφ dx −
∫

ei
|u|p−2uφ dx

)
=

∑
1≤i≤D

( du
dxei

(bi) φ(bi)︸ ︷︷ ︸
=0

− du
dxei

(ai) φ(a)︸ ︷︷ ︸
=1

)

+
∑

1≤i≤D

∫
ei

(−u′′ + λu − |u|p−2u︸ ︷︷ ︸
=0

)φ(x) dx

so that
∑

1≤i≤D
du

dxei
(ai) = 0, which is Kirchhoff’s condition.
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The Nehari manifold

The functional Jλ is not bounded from below on H1(G), since if u ̸= 0 then

Jλ(tu) = t2

2 ∥u′∥2
L2(G) + λt2

2 ∥u∥2
L2(G) − tp

p ∥u∥p
Lp(G) −−−→

t→∞
−∞.

A common strategy is to introduce the Nehari manifold Nλ(G), defined by

Nλ(G) :=
{

u ∈ H1(G) \ {0} | J ′
λ(u)[u] = 0

}
=
{

u ∈ H1(G) \ {0} | ∥u′∥2
L2(G) + λ∥u∥2

L2(G) = ∥u∥p
Lp(G)

}
.

If u ∈ Nλ(G), then
Jλ(u) =

(1
2 − 1

p
)
∥u∥p

Lp(G).

In particular, Jλ is bounded from below on Nλ(G).
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Two action levels

« Ground state » action level:

cλ(G) := inf
u∈Nλ(G)

Jλ(u)

Ground state: function u ∈ Nλ(G) with level cλ(G). If it exists, it is a
solution of the differential system (NLS).
Minimal level attained by the solutions of (NLS):

σλ(G) := inf
u∈Sλ(G)

Jλ(u).

Minimal action solution: solution u ∈ Sλ(G) of the differential system
(NLS) of level σλ(G).
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Four cases

An analysis shows that four cases are possible:

A1) cλ(G) = σλ(G) and both infima are attained;
A2) cλ(G) = σλ(G) and neither infima is attained;
B1) cλ(G) < σλ(G), σλ(G) is attained but not cλ(G);
B2) cλ(G) < σλ(G) and neither infima is attained.

Theorem (De Coster, Dovetta, G., Serra (Calc. Var. PDEs. 2023))
For every p > 2, every λ > 0, and every choice of alternative between A1,
A2, B1, B2, there exists a metric graph G where this alternative occurs.
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Case A1
cλ(G) = σλ(G) and both infima are attained

Compact graphs

∞ ∞
The line

∞
The halfline

∞ ∞
All graphs with cλ(G) < sλ
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Case B1
cλ(G) < σλ(G), σλ(G) is attained but not cλ(G)

∞

∞

∞

∞

∞

∞∞

∞

∞ ∞

∞

N-star graphs, N ≥ 3

sλ = cλ(G) < σλ(G) = N
2 sλ
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Case A2
cλ(G) = σλ(G) and neither infima is attained

∞
v1

L1

v2

L2

v3

L3

v4

L4

v5

L5

v6

L6

· · ·· · ·· · ·· · ·· · ·· · ·· · ·

· · ·

sλ = cλ(G) = σλ(G)
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Case B2
cλ(G) < σλ(G) and neither infima is attained

∞ ∞ ∞ ∞ ∞ ∞ ∞∞ ∞ ∞ ∞ ∞ ∞ ∞

v0 v1 v2 v3v−1v−2v−3

L1 L2 L3L−1L−2L−3

B

R−3 R−2 R−1 R0 R1 R2 R3

sλ = cλ(G) < σλ(G)
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A very useful tool: cutting solitons on halflines

Proposition
Assume that G has at least one halfline. Then,

cλ(G) ≤ sλ := Jλ(φλ)

Proof.

G
∞

u
e0

e1

e2
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Decreasing rearrangement on the halfline

G

u

e0

e1

e2

u∗

|G|

For all 1 ≤ p ≤ +∞,

∥u∥Lp(G) = ∥u∗∥Lp(0,|G|).
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The Pólya–Szegő inequality

Theorem
Let u ∈ H1(G) be a nonnegative function. Then its decreasing
rearrangement u∗ belongs to H1(0, |G|), and one has

∥(u∗)′∥L2(0,|G|) ≤ ∥u′∥L2(G).

Pólya, G., Szegő, G. Isoperimetric Inequalities in Mathematical
Physics. Annals of Mathematics Studies. Princeton, N.J. Princeton
University Press. (1951).

Duff, G. Integral Inequalities for Equimeasurable Rearrangements.
Canadian Journal of Mathematics 22 (1970), no. 2, 408–430.

Friedlander, L. Extremal properties of eigenvalues for a metric graph.
Ann. Inst. Fourier (Grenoble) 55 (2005) no. 1, 199–211.
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The Pólya–Szegő inequality
A simple case: affine functions

We assume that u is piecewise affine.

u

I

ℓ1 ℓ2 ℓ3 ℓ4

u∗

I

ℓ1 + ℓ2 + ℓ3 + ℓ4

We consider a small open interval I ⊆ u(G) so that u−1(I) consists of a
disjoint union of open intervals on which u is affine.
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The Pólya–Szegő inequality
A simple case: affine functions

Original contribution to ∥u′∥2
L2 :

A := ℓ1
|I|2

ℓ2
1

+ ℓ2
|I|2

ℓ2
2

+ ℓ3
|I|2

ℓ2
3

+ ℓ4
|I|2

ℓ2
4

= |I|2
ℓ1

+ |I|2
ℓ2

+ |I|2
ℓ3

+ |I|2
ℓ4

Contribution to ∥(u∗)′∥2
L2 :

B := |I|2
ℓ1 + ℓ2 + ℓ3 + ℓ4

Inequality between arithmetic and harmonic means:

ℓ1 + ℓ2 + ℓ3 + ℓ4
4 ≥ 4

1
ℓ1

+ 1
ℓ2

+ 1
ℓ3

+ 1
ℓ4

⇒ A ≥ 42B ≥ B.
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A refined Pólya–Szegő inequality...
... or the importance of the number of preimages

Theorem
Let u ∈ H1(G) be a nonnegative function. Let N ≥ 1 be an integer.
Assume that, for almost every t ∈ ]0, ∥u∥∞[, one has

u−1({t}) =
{
x ∈ G | u(x) = t

}
≥ N.

Then one has
∥(u∗)′∥L2(0,|G|) ≤ 1

N ∥u′∥L2(G).
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Assumption (H)

Definition (Adami, Serra, Tilli (Calc. Var. PDEs. 2014))
We say that a metric graph G satisfies assumption (H) if, for every point
x0 ∈ G, there exist two injective curves γ1, γ2 : [0, +∞[ → G parameterized
by arclength, with disjoint images except for an at most countable number
of points, and such that γ1(0) = γ2(0) = x0.

∞ ∞
x0

Consequence: all nonnegative H1(G) functions have at least two preimages
for almost every t ∈ ]0, ∥u∥∞[.
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Non-existence of ground states

Theorem (Adami, Serra, Tilli (Calc. Var. PDEs. 2014))
If a metric graph G satisfies assumption (H), then

cλ(G) = sλ

but it is never achieved

, unless G is isometric to one of the exceptional
graphs depicted in the next two slides.
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Non-existence of ground states
Exceptional graphs: the real line

x1
∞ ∞

Damien Galant Constant sign and sign changing NLS ground states on noncompact metric graphs 33



Metric graphs NLS Ground states Some proof techniques Take-home message

Non-existence of ground states
Exceptional graphs: the real line with a tower of circles

xn
∞∞

xn−1

x1

x2...
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A doubly constrained variational problem
We define

Xe :=
{

u ∈ H1(G) | ∥u∥L∞(G) = ∥u∥L∞(e)
}

where e is a given bounded edge of G

and we consider the
doubly–constrained minimization problem

cλ(G, e) := inf
u∈Nλ(G)∩Xe

Jλ(u).

Theorem (De Coster, Dovetta, G., Serra (Calc. Var. PDEs. 2023))
If G satisfies assumption (H) has a long enough bounded edge e, then
cλ(G, e) is attained by a solution u ∈ Sλ(G), such that u > 0 or u < 0 on
G and

∥u∥L∞(e) > ∥u∥L∞(G\e).
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Why studying metric graphs?
Mathematical motivations

Main message
Metric graphs allow to study interesting one dimensional problems and are
much richer than the usual class of intervals of R.

Dimension one has many advantages:
“nice” Sobolev embeddings

, H1 functions are continuous;

counting preimages and the refined Pólya–Szegő inequality;
ODE techniques;
. . . ;

Replacing G by noncompact smooth open sets Ω ⊆ Rd , d ≥ 2 and H1(G)
by H1(Ω) or H1

0 (Ω), one expects that the four cases A1, A2, B1, B2
actually occur.

However, to this day, it remains on open problem!
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Curious about metric graphs?

NQG : Summer school : “Nonlinear Quantum Graphs”

17–21 June 2024, Valenciennes; https://nqg.sciencesconf.org/

Damien Galant Constant sign and sign changing NLS ground states on noncompact metric graphs 2

https://nqg.sciencesconf.org/


Thanks! Important news! References Atomtronics Cases A2 and B2: what’s going on?

Curious about metric graphs?
NQG : Summer school : “Nonlinear Quantum Graphs”

17–21 June 2024, Valenciennes; https://nqg.sciencesconf.org/

Damien Galant Constant sign and sign changing NLS ground states on noncompact metric graphs 2

https://nqg.sciencesconf.org/


Thanks! Important news! References Atomtronics Cases A2 and B2: what’s going on?

References

Adami R., Serra E., Tilli P., NLS ground states on graphs, Calc. Var.
54, 743–761 (2015).

De Coster C., Dovetta S., Galant D., Serra E. On the notion of ground
state for nonlinear Schrödinger equations on metric graphs. Calc. Var.
62, 159 (2023).

De Coster C., Dovetta S., Galant D., Serra E., Troestler C., Constant
sign and sign changing NLS ground states on noncompact metric
graphs. ArXiV preprint: https://arxiv.org/abs/2306.12121.

Damien Galant Constant sign and sign changing NLS ground states on noncompact metric graphs 3

https://arxiv.org/abs/2306.12121


Thanks! Important news! References Atomtronics Cases A2 and B2: what’s going on?

Overviews of the subject

Adami R. Ground states of the Nonlinear Schrodinger Equation on
Graphs: an overview (Lisbon WADE).
https://www.youtube.com/watch?v=G-FcnRVvoos (2020)

Adami R., Serra E., Tilli P. Nonlinear dynamics on branched structures
and networks. https://arxiv.org/abs/1705.00529 (2017)

Kairzhan A., Noja D., Pelinovsky D. Standing waves on quantum
graphs. J. Phys. A: Math. Theor. 55 243001 (2022)

Damien Galant Constant sign and sign changing NLS ground states on noncompact metric graphs 4

https://www.youtube.com/watch?v=G-FcnRVvoos
https://arxiv.org/abs/1705.00529


Thanks! Important news! References Atomtronics Cases A2 and B2: what’s going on?

An application: atomtronics

A boson1 is a particle with integer spin.

When identical bosons are cooled down to a temperature very close
to absolute zero, they occupy a unique lowest energy quantum state.
This phenomenon is known at Bose-Einstein condensation.
This is really remarkable: macroscopic quantum phenomenon!
Since 2000: emergence of atomtronics, which studies circuits guiding
the propagation of ultracold atoms.

1Here we will consider composite bosons, like atoms.
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What’s going on in case A2?
cλ(G) = σλ(G) and neither infima is attained

∞
v1

L1

v2

L2

v3

L3

v4

L4

v5

L5

v6

L6

· · ·· · ·· · ·· · ·· · ·· · ·· · ·

· · ·
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What’s going on in case A2?

Since G has at least one halfline and satisfies assumption (H), one has
cλ(G) = sλ and the infimum is not attained (as G does not belong to
the class of exceptional graphs).

Cutting solitons on the loops, one sees that

cλ(G, Ln) −−−→
n→∞

sλ

According to the existence Theorems, cλ(G, Ln) is attained by a
solution of (NLS) for every n large enough.
One obtains

sλ = cλ(G) ≤ σλ(G) ≤ lim inf
n→∞

cλ(G, Ln) = sλ,

so
cλ(G) = σλ(G) = sλ

and neither infimum is attained.
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What’s going on in case B2?
cλ(G) < σλ(G) and neither infima is attained

∞ ∞ ∞ ∞ ∞ ∞ ∞∞ ∞ ∞ ∞ ∞ ∞ ∞

v0 v1 v2 v3v−1v−2v−3

L1 L2 L3L−1L−2L−3

B

R−3 R−2 R−1 R0 RR̃ R2 R3

The graph GN .

The loops Li have length N and B is made of N edges of length 1.
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What’s going on in case B2?
A second, periodic, graph

∞ ∞ ∞ ∞ ∞ ∞ ∞∞ ∞ ∞ ∞ ∞ ∞ ∞

ṽ0 ṽ1 ṽ2 ṽ3ṽ−1ṽ−2ṽ−3

L̃1 L̃2 L̃3L̃−1L̃−2L̃−3 L̃0

R̃−3 R̃−2 R̃−1 R̃0 R̃R̃ R̃2 R̃3

The graph G̃N .

The loops L̃i have length N.
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What’s going on in case B2?
Two problems at infinity

Since GN and G̃N satisfy (H) and contain halflines, one has

sλ = cλ(GN) = cλ(G̃N),

and neither infima is attained.

One can show that, if N is large enough, then σλ(G̃N) is attained
(using the periodicity of G̃N).

Hence σλ(G̃N) > sλ.

One then shows, using suitable rearrangement techniques, that

σλ(GN) = σλ(G̃N),

but that σλ(GN) is not attained.
Therefore, for large N, we have that

sλ = cλ(GN) < σλ(GN),

and neither infima is attained, as claimed.
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